Representation Dimension as a Relative Homological Invariant of Stable Equivalence

نویسنده

  • ALEX S. DUGAS
چکیده

Over an Artin algebra Λ many standard concepts from homological algebra can be relativized with respect to a contravariantly finite subcategory C of mod-Λ, which contains the projective modules. The main aim of this article is to prove that the resulting relative homological dimensions of modules are preserved by stable equivalences between Artin algebras. As a corollary, we see that Auslander’s notion of representation dimension is invariant under stable equivalence (a result recently obtained independently by Guo). We then apply these results to the syzygy functor for self-injective algebras of representation dimension three, where we bound the number of simple modules in terms of the number of indecomposable nonprojective summands of an Auslander generator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Oplus-supplemented modules with respect to images of a fully invariant submodule

Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...

متن کامل

Genus stabilization for the components of moduli spaces of curves with symmetries

In a previous paper (Groups, Geometry, and Dynamics, 2015), we introduced a new homological invariant ε for the faithful action of a finite group G on an algebraic curve. We show here that the moduli space of curves admitting a faithful action of a finite group G with a fixed homological invariant ε, if the genus g′ of the quotient curve satisfies g′ 0, is irreducible (and non-empty if and only...

متن کامل

1 Ju l 2 00 3 The relationship between homological properties and representation theoretic realization of artin algebras

We will study the relationship of quite different object in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, τ -categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers. 0.1 There exists a bijection between equivalence classes of Krull-Schmidt categories C with additive gen...

متن کامل

The Relationship between Homological Properties and Representation Theoretic Realization of Artin Algebras

We will study the relationship of quite different objects in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, τ -categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers. 0.1. There exists a bijection between equivalence classes of Krull-Schmidt categories C with additive g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006